

SPEDAS training session - advanced course -

T. Hori, M. Teramoto, T.-F. Chang, Y. Tsugawa, M. Shoji, S. Kurita, Y. Miyoshi, N. Umemura, T. Segawa (ERG Science Center, ISEE, Nagoya Univ.)

Goal of this training

- To get familiar with how to load, plot, and manipulate the particle data of the ERG satellite.
 - load and plot the particle flux data of LEP-e, LEP-i, MEPe, MEP-i, HEP, and XEP.
 - Use the "part_products" libraries to make a plot of:
 - Energy-time spectrogram
 - Phi-/Theta-angle spectrogram
 - Pitch angle spectrogram
 - Gyro-phase spectrogram
 - velocity moments

- This is a "hands-on" training for SPEDAS, not a time for e-mail check!
- Communicate with lecturers, tutors, and neighboring skilled users.
- Today's session might not be able to cover all topics in the handouts due to time limitation. It is recommended to go through the entire contents later by yourself.
- We will proceed rather slowly with intermediate-level users, but you can practice at your own pace.

Keep in mind upon the training (cont'd)

- We are going to download fairly large data files today. For a smooth and successful training, please be sure to follow the rules listed below, when you are hooked up to the special WiFi network for the training:
 - Stop using/synchronizing online storages (Dropbox, Google drive, OneDrive, iCloud, etc.) to <u>save the band</u> width of the network.
 - > Turn off Windows Update temporarily (Windows users).
 - Do not access online movie sites (Youtube, Niko-Niko-Douga(ニコニコ動画), etc.).

Brief introduction of Arase's particle data

About particle data obtained by Arase

- LEP-e (PI: S.-Y. Wang, ASIAA)
 - https://earth-planetsspace.springeropen.com/articles/10.1186/s40623-017-0748-6
- LEP-i (PI: K. Asamura, JAXA/ISAS)
 - https://earth-planetsspace.springeropen.com/articles/10.1186/s40623-018-0846-0
- MEP-e (PI: S. Kasahara, Univ. of Tokyo)
 - https://earth-planetsspace.springeropen.com/articles/10.1186/s40623-018-0847-z
- MEP-i (PI: S. Yokota, Osaka Univ.)
 - https://earth-planetsspace.springeropen.com/articles/10.1186/s40623-017-0754-8
- HEP (PI: T. Mitani, JAXA/ISAS)
 - https://earth-planetsspace.springeropen.com/articles/10.1186/s40623-018-0853-1
- XEP (PI: N. Higashio, JAXA/RDD)
 - https://earth-planetsspace.springeropen.com/articles/10.1186/s40623-018-0901-x

Omni-flux data

Loading and plotting omni-flux data (1)

;; Set the time span

timespan, '2017-04-19'

;; Load data

erg_load_xep, datatype='omniflux'
erg_load_hep, datatype='omniflux'
erg_load_mepe, datatype='omniflux'
erg_load_lepe, datatype='omniflux'
erg_load_mepi_nml, datatype='omniflux'
erg_load_lepi_nml, datatype='omniflux'
tplot_names

Loading and plotting omni-flux data (2)

Loading and plotting omni-flux data (3)

vn = 'erg_xep_l2_FED0_SSD'
options, vn, spec=0 & ylim, vn, 0, 0, 1

tplot ;; Replot the previously plotted variables

erg_load_hep, datatype='omniflux', /lineplot
tplot, ['erg_xep_l2_FED0_SSD', 'erg_hep_l2*line']

3-D flux data

Loading and plotting 3-D flux data (1)

```
;; ERG working group ID/password
uname = '???????' & pass = '???????'
```

```
timespan, '2017-04-19'
;; erg_load_hep, datatype='3dflux', uname=uname, pass=pass
erg_load_mepe, datatype='3dflux'
;; erg_load_lepe, datatype='3dflux', uname=uname, pass=pass
;; erg_load_mepi_nml, datatype='3dflux'
;; erg_load_lepi_nml, datatype='3dflux', uname=uname, pass=pass
```

Setting the keyword, datatype='3dflux', makes erg_load_??? load 3-D flux data, except for XEP whose full resolution data are not available as of this training.

<u>!! CAUTION !!</u>

Loading any two 3-D flux data of MEP-e, MEP-i, LEP-e, and LEP-i at once might use up the memory of your PC and make the PC unstable. If your PC has 8 GB memory or less, it is recommended to remove data preexisting on memory by typing del_data, '*' before loading a new one.

Loading and plotting 3-D flux data (2)

;; In case you have loaded MEP-e and LEP-e:
tplot, ['erg_mepe_l2_3dflux_FEDU', 'erg_lepe_l2_3dflux_FEDU']

;; In case you have loaded MEP-e and HEP:

;; Please plot FEDO_? instead of FEDU_? for HEP, otherwise tplot stops
;; with an error.

tplot, ['erg_hep_l2_3dflux_FEDO*', 'erg_mepe_l2_3dflux_FEDU']

(Memo)

Play with part_products

 A set of generic routines bundled to SPEDAS to make tplot variables for various types of spectrum plot.

What's "part_products"?

- An experimental version of this library is available from ERG-SC for LEP-e, LEP-i, MEP-e, MEP-i, and HEP so far.
 - > erg_mep_part_products: MEP-e and MEP-i
 - > erg_hep_part_products: HEP
 - erg_lepe_part_products: LEP-e
 - > erg_lepi_part_products: LEP-i

Energy-time spectrogram

```
del_data, '*'
timespan, '2017-04-11/07:00',10, /hour
erg_load_hep, datatype='3dflux', uname=uname, pass=pass
erg_load_mepe, datatype='3dflux'
```

```
erg_hep_part_products, 'erg_hep_l2_FEDU_L'
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU'
```

tplot, ['erg_hep_l2_FEDU_L_energy', 'erg_mepe_l2_3dflux_FEDU_energy']

Running part_produtcts without any option gives omni-directional fluxes by averaging over all directions.

The default unit of energy and differential flux becomes eV and #/s/cm2/str/eV when flux data are processed with part_products.

Energy-time spectrogram in different unit

erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', units='flux' ;; Default
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', units='eflux', suffix='_eflux'
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', units='df', suffix='_psd'

;; With keyword "relativistic" on, phase space density values are calculated ;; in $(c/MeV/cm)^3$ considering the relativistic effect. But this conversion ;; is still experimental and needs to be further tested.

erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', units='df', suffix='_psdgem', /rela

tplot, ['erg_mepe_l2_3dflux_FEDU_energy*']

Energy-time spectrogram for limited directional channels

get_timespan, tr
erg_hep_part_products, 'erg_hep_l2_FEDU_L', theta=[-30.,30], trange=tr
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', phi=[0.,90], trange=tr

tplot, ['erg_hep_l2_FEDU_L_energy', 'erg_mepe_l2_3dflux_FEDU_energy']

Phi and theta should be given as a range of angle in the DSI coordinates.

Keywords theta and phi can be set together to specify a limited area of solid angle in DSI.

Phi-/Theta-angle spectrogram

del_data, '*'
timespan, '2017-04-11/17:00', 6, /hour
erg_load_lepe, datatype='3dflux', /no_sort_enebin, uname=uname, pass=pass, varformat='FEDU'
erg_load_lepi_nml, datatype='3dflux', uname=uname, pass=pass, varformat='FPDU'

```
get_timespan, tr
erg_lepe_part_products, 'erg_lepe_l2_3dflux_FEDU', outputs='phi', trange=tr, energy=[3000.,10000.]
erg_lepi_part_products, 'erg_lepi_l2_3dflux_FPDU', outputs='theta', trange=tr, energy=[8000.,20000.]
zlim, 'erg_lepi_l2_3dflux_FPDU_theta', 1e-1, 1e+3, 1
```

tplot, ['erg_lepe_l2_3dflux_FEDU*', 'erg_lepi_l2_3dflux_FPDU*']

Keyword 'energy' specifies an energy range in eV for which particle flux data are averaged to deduce a phi-/thetaspectrogram.

Pitch-angle spectrogram (1)

del_data, '*'
timespan, '2017-04-15/00:00', 2, /hour & get_timespan, tr
erg_load_mepi_nml, datatype='3dflux', varformat='FPDU'
erg_load_mgf
erg_load_orb
erg_mep_part_products, 'erg_mepi_l2_3dflux_FPDU', output='pa', pos='erg_orb_l2_pos_gse',
mag='erg_mgf_l2_mag_8sec_dsi', energy=[108000., 112000.], suffix='_110kev', trange=tr
erg_mep_part_products, 'erg_mepi_l2_3dflux_FPDU', output='pa', pos='erg_orb_l2_pos_gse',
mag='erg_mgf_l2_mag_8sec_dsi', energy=[54000., 58000.], suffix='_56kev', trange=tr

tplot, 'erg_mepi_l2_3dflux_FPDU*'

Pitch-angle spectrogram (2)

del_data, '*'
timespan, '2017-04-08/19:00', 30, /min & get_timespan, tr
erg_load_mepe, datatype='3dflux', varformat='FEDU
erg_load_mgf
erg_load_orb
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', output='pa', pos='erg_orb_l2_pos_gse',
mag='erg_mgf_l2_mag_8sec_dsi', energy=[16000., 18000.], suffix='_17kev', trange=tr
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', output='pa', pos='erg_orb_l2_pos_gse',
mag='erg_mgf_l2_mag_8sec_dsi', energy=[23000., 25000.], suffix='_24kev', trange=tr

zlim, 'erg_mepe_l2_3dflux_FEDU_pa*', 1e+2, 1e+4, 1
tplot, 'erg_mepe_l2_3dflux_'+['FEDO', 'FEDU_pa*']

Energy-time spectrogram for a limited pitchangle range

del_data, '*'
timespan, '2017-03-27/10:30', 50, /min
erg_load_mepe, datatype='3dflux'
erg_load_mgf & erg_load_orb

get_timespan, tr
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', pos='erg_orb_l2_pos_gse',
mag='erg_mgf_l2_mag_8sec_dsi', output='energy', trange=tr, pitch=[0.,3.], suffix='_pa00-03',
/no_regrid
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', pos='erg_orb_l2_pos_gse',
mag='erg_mgf_l2_mag_8sec_dsi', output='energy', trange=tr, pitch=[10.,15.], suffix='_pa10-15',
/no_regrid

erg 12 Sdflux FEDU 00-00

tplot, 'erg_mepe_l2_3dflux_'+['FEDU_energy*']

المعالم معالم المعالم المع معالم المعالم المع

Gyro-phase spectrogram

del_data, '*'
timespan, '2017-04-15/00:00', 2, /hour
erg_load_mepi_nml, datatype='3dflux', varformat='FPDU'
erg_load_mgf
erg_load_orb

```
get_timespan, tr
erg_mep_part_products, 'erg_mepi_l2_3dflux_FPDU', output='gyro',
pos='erg_orb_l2_pos_gse', mag='erg_mgf_l2_mag_8sec_dsi', energy=[108000., 112000.],
pitch=[85.,95.], trange=tr, suffix='_110kev'
```

tplot, 'erg_mepi_l2_3dflux_'+['FPDO', 'FPDU_gyro*']

Velocity moments of 3-D distribution functions

Moment calculation by part_products

- A part_products calls moments_3d(), an internal routine, to calculate various velocity moments from a 3-D distribution function.
- So far part_products for only MEP-e and MEP-i support the moment calculation.

Moment calculation (1)

48 erg_mepi_12_3dflux_FPDU_density

49 erg_mepi_12_3dflux_FPDU_eflux

50 erg_mepi_12_3dflux_FPDU_flux

51 erg_mepi_l2_3dflux_FPDU_mftens 52 erg_mepi_l2_3dflux_FPDU_ptens

53 erg_mepi_12_3dflux_FPDU_sc_current

54 erg_mepi_12_3dflux_FPDU_velocity

55 erg_mepi_12_3dflux_FPDU_vthermal

56 erg_mepi_12_3dflux_FPDU_magf 57 erg_mepi_12_3dflux_FPDU_magt3

59 erg_mepi_12_3dflux_FPDU_sc_pot

61 erg_mepi_l2_3dflux_FPDU_symm_theta 62 erg_mepi_l2_3dflux_FPDU_symm_phi

63 erg_mepi_12_3dflux_FPDU_symm_ang

60 erg_mepi_12_3dflux_FPDU_symm

58 erg_mepi_12_3dflux_FPDU_t3

del_data, '*'		
timespan, '2017-03-27/10:00', 1, /hour & get_timespan, tr		
erg_load_mepe, datatype='3dflux', varformat='FEDU'		
erg_load_mepi_nml, datatype='3dflux', varformat='FPDU'		
erg_load_mgf & erg_load_orb		
erg_mep_part_products, 'erg_mepi_l2_3dflux_FPDU', pos='erg_orb_l2_pos_gse', mag='erg_mgf_l2_mag_8sec_dsi', output='moments', trange=tr		
erg_mep_part_products, 'erg_mepe_l2_3dflux_FEDU', pos='erg_orb_l2_pos_gse', mag='erg_mgf_l2_mag_8sec_dsi', output='moments', trange=tr		
ERG> tplot_names, 'erg_mepi_12_3dflux_FPDU_*' 47 erg_mepi_12_3dflux_EPDU_avgtemp Primary parameters calculated with the part products:		

- density: number density
- avgtemp: scalar temperature (!)
- velocity: bulk velocity
- vthermal: thermal velocity
- > mtens: momentum flux density tensor
- ptens: pressure tensor
- t3: temperature tensor (!)
- magt3: perpendicular/parallel temperature (!)
- flux: number flux
- eflux: energy flux

All vector and tensor quantities in DSI coordinates.

(!) Note that these are NOT a temperature defined as a width of Maxwellian distribution.

SPEDAS training, ERG particle data WS @Tohoku Univ. Sep. 20, 2018

FRG>

Moment calculation (2)

ylim, '*FPDU*ptens', 0, 1e+5, 0 ;; set y-ranges with linear scale
ylim, '*FEDU*ptens', 0, 1e+4, 0
tplot, ['erg_mep?_l2_3dflux_'+['F?D0', 'F?DU_ptens']]

(Memo)

SPEDAS training, ERG particle data WS @Tohoku Univ. Sep. 20, 2018

Appendix: Internal routines of part_products

An alternative way to deduce pitch-angle spectra rather manually

3-D data structure common to particle data the SPEDAS can handle

ERG> help, dist[100	0]	
PROJECT_NAME	STRING	'ERG'
SPACECRAFT	LONG	1
DATA_NAME	STRING	'LEP-i Proton 3dflux'
UNITS_NAME	STRING	'flux'
UNITS_PROCEDURE	STRING	<pre>'erg_convert_flux_units</pre>
SPECIES	STRING	'proton'
VALID	BYTE	1
CHARGE	FLOAT	1.00000
MASS	FLOAT	0.0104535
TIME	DOUBLE	1.4959304e+09
END_TIME	DOUBLE	1.4959304e+09
DATA	FLOAT	Array[30, 16, 8]
BINS	FLOAT	Array[30, 16, 8]
ENERGY	FLOAT	Array[30, 16, 8]
DENERGY	FLOAT	Array[30, 16, 8]
NENERGY	LONG	30
NBINS	LONG	128
PHI	FLOAT	Array[30, 16, 8]
DPHI	FLOAT	Array[30, 16, 8]
ТНЕТА	FLOAT	Array[30, 16, 8]
DTHETA	FLOAT	Array[30, 16, 8]
ERG>		

An example for LEP-i 3-D flux data:

dist is an array of structures each of which contains a set of data for each spin.

"DATA" holds the flux data as a 3-D array of 30 ene. ch x 16 spin sector x 8 sensors.

ENERGY and DENERGY are the central energies and energy ranges of the energy channels.

PHI, DPHI, THETA, and DTHETA have phi/theta angles of particle-going directions and angular widths measured by directional channels of a particle instrument in the DSI coordinate system.

timespan, '2017-05-28'
erg_load_lepi_nml, datatype='3dflux', varformat='FPDU'

dist = erg_lepi_get_dist('erg_lepi_l2_3dflux_FPDU', /structure)

help, dist help, dist[0]

Each get_dist() should be used for the 3-D flux data of each instrument, by providing a tplot variable of 3-D flux data as the argument.

- For LEP-i: erg_lepi_get_dist()
- For LEP-e: erg_lepe_get_dist()
- For MEP-e: erg_mepe_gest_dist()
- For MEP-i: erg_mepi_get_dist()
- For HEP: erg_hep_get_dist()

erg_pgs_make_fac, spd_pgs_do_fac: Transformation to the field-aligned coordinates (FAC)

dist_fac = dist ;; Make a copy of the dist structure

```
;; Transform phi/theta values in the dist structure to those in FAC for each time frame
for i = 0L, n_elements(dist.time)-1 do begin
    spd_pgs_do_fac, dist[i], reform( fac_mat[i, *, *], [3,3] ), $
        output=dist_tmp, error=error
    dist_fac[i] = dist_tmp
endfor
```

Note that:

- Both the magnetic field data in DSI and the orbit data in GSE should be given to erg_pgs_make_fac. They are automatically interpolated in time to match time frames of particle data given as a 1-D array in SPEDAS time unit (dist.time in the above case).
- The transformation matrix is made for the particle time frames, as a 3-D array of time x 3 x 3 (fac_mat in the above case).
- spd_pgs_do_fac changes only phi and theta arrays in a particle data structure.

Binning and averaging flux data in FAC to deduce pitch-angle spectra

dist_fac.theta = 90. - dist_fac.theta ;; colat. in FAC = pitch angle

```
;; Prepare data arrays for a selected energy channel
enech = 2 ;; ch02 --> 19.2 keV
dat_arr = reform( dist_fac.data[ enech, *, * ] )
pa_arr = reform( dist_fac.theta[ enech, *, * ] )
ntimes = n_elements(dist_fac.time)
dim = dimen( dist_fac[0].data )
t_arr = rebin( reform( dist_fac.time, [1,1,ntimes] ), [dim[1:*],ntimes] )
```

- Bin2d calculates an average flux for each time x pitch-angle bin. No smoothing or interpolation is applied, unlike how data are averaged by part_products.
- The original version of bin2d.pro does not accept /double keyword. Please download and use bin2d.pro and bin1d.pro of the SPEDAS-j tools, which are available from the SPEDAS-j website at: https://github.com/spedas-j/member_contrib/tree/master/misc/bin12d

Binning and averaging flux data in FAC to deduced pitch-angle spectra (cont'd)

;; Put the resultant arrays in a tplot varirable

vname = 'erg_lepi_paspec_ene02'

```
store_data, vname, data={ x:time_c, y:aveflux, v:pa_c }
```

;; Set some plot properties

options, vname, spec=1, constant=[45,90,135], ytickinterval=45., yminor=3

ylim, vname, 0, 180, 0

zlim, vname, 0, 0, 1 ;; auto-scale in log

;; Plot!
tplot, vname

One of the pitch-angle spectra shown in Asamura+, EPS, 2018 is reproduced!

Definition of the FA coordinate system"s" used by part_products

- 'xgse'
 - Y-axis: the vector product of Z-axis and the Xgse direction ($e_y = e_z \times e_{x_gse}$)
 - ► X-axis: e_y x e_z
- \ (m)phigeo'
 - > Y-axis: the vector product of Z-axis and the phi direction (roughly eastward) in the geographical (GEO) coordinate system at a satellite location. mphigeo uses the negative phi direction (roughly westward) instead.
 - X-axis: e_y x e_z (roughly radially outward for phigeo and radially inward for mphigeo)

'(m)phism'

- Y-axis: the vector product of Z-axis and the phi direction (roughly eastward) in the solar-magnetic (SM) coordinate system at a satellite location. mphi sm uses the negative phi direction (roughly westward) instead.
- X-axis: e_y x e_z (roughly radially outward for phism and radially inward for mphism)

Other sources about part_products

- (SPEDAS top)/idl/general/science/spd_part_products/
 - The directory in which common routines of the part_products library are placed.
- Brief description about the 3-D data structure format on SPEDAS wiki
 - http://spedas.org/wiki/index.php?title=3D_data_structures
- SPEDAS-j wiki?
 - https://github.com/spedas-j/member_contrib/wiki/top Nothing now, but some may appear in future...

What else?